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We discuss the implementation of a fast, memory-sparing probabilistic top k selection algorithm on 
the graphics processing unit (GPU) [1]. This probabilistic approach permits exploitation of the massive 
parallelism of the GPU. This algorithm is linear in list length and is much faster than previously known 
GPU selections.

Selection of the top k elements from a strictly weakly ordered set is 
one of the classic computer science algorithms [2]. Selection has 

application to a wide variety of statistical, computational, and database-
processing problems, such as computer vision, robotics, data mining 

and image processing. Our initial motivation was in support of 
a graphics processing unit (GPU) implementation of the CLEAN 
algorithm, used in radioastronomy to remove noise from images 
that are generated from multiple antennas [3,4].

Las Vegas algorithms like this selection are a form of stochastic 
optimization, and optimize time spent and memory used. They can 
be well suited to more general parallel processors with limited 
amounts of fast memory. For problems having a quantifiable and 
efficiently checkable randomized way to guess an answer, the 
Las Vegas approach may be much more efficient than a direct 
calculation.

Selection of GPU. The GPU is an accelerator that is seeing 
increasing use in high-performance computing. It has a massively 
parallel single instruction, multiple data (SIMD) architecture and 
a hierarchical memory structure. This architecture is best suited 
to parallel algorithms that make use of the many processors 
without demanding much inter-processor data movement. 
Advantages of the GPU include massive parallelism providing 
much performance improvement (for parallel algorithms). 
Disadvantages include the small amount of fast memory close to 
each processor, necessitating careful and limited data placement, 
and the constrained bandwidth from the central processing unit 
(CPU) to GPU.

The naïve approaches to selection do not map well to the GPU. These 
compare elements on a global basis, so they call for an ample amount 
of fast memory to hold elements for comparison, or else a large amount 
of data movement across memory hierarchies. Selection via sort is 
another approach: after a sort, the top k elements are trivially extracted. 
Although fast sorts exist on the GPU, this method does more work than 
needed, and therefore is wasteful. If the kth element were only known 
ahead of time, selection would be well-suited to the GPU—elements 
could be read into the processors, compared against the known kth 
key, and saved if their rank is higher than the kth. This process is 
highly parallel and requires little inter-processor data movement. 
Unfortunately, neither the kth element nor the list distribution is known 
before execution.

It is possible, however, to guess the kth element probabilistically, and 
thus proceed as if the kth were known. Two list elements are found 
between which the kth element is located with arbitrary probability. This 
probabilistic guess eliminates the need for global data availability and 
transforms the problem into the highly parallel version described above. 
Although this algorithm is probabilistic, it always calculates a correct, 
unordered set of the top k elements, always terminates, and terminates 
after only one iteration with arbitrarily chosen probability. 

This randomized selection is an example of a Las Vegas algorithm 
[5]. A Las Vegas algorithm is one of a class of algorithms for which 
the methods are probabilistic, but the result is always correct. Similar 
selections were developed by Motwani and Raghavan [6] and by Bader 
[7], but these methods used a different method of guessing the kth 
element. 

Fig. 1. Flowchart representing the 
selection algorithm. Those kernels 
making heavy use of the GPU are 
shaded, with the darkest being the most 
time-consuming.
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Randomized Selection Algorithm. The algorithm 
proceeds via an iterative, probabilistic guess-
and-check process for a three-way partition. 
The algorithm is composed of three parts: 1) the 
probabilistic guess of two pivots between which 
the kth element is likely to fall, 2) partition 
based on the pivots, and 3) reduced selection 
on the smallest (middle) part of the partition, 
holding the kth element. Both keys and values 
are extracted. The original list is untouched.

To guess the two pivots, we use a set of 
randomly chosen keys (called splitters) from the 

list. We sort the splitters and use them to conceptually partition the list, 
thus “flattening out” the distribution. This conceptual partition produces 
buckets that typically contain roughly the same number of keys, so 
one can reason probabilistically about them. We use this conceptual 
structure to estimate the probability of the kth key falling into each 
bucket. 

This estimate makes use of a binomial approximation to determine the 
probability that the kth key is in a specific bucket or set of buckets. If 
the kth key lies outside the range of the splitters, the approximation 
may be poor for the end buckets, but the impact will be minimal if the 
tail probabilities associated with the end buckets are small. Numerical 
studies confirm that the method performs well. The bucket probabilities 
are added and a concatenation of buckets is chosen so that the 
concatenation 1) contains the kth key with desired probability, and 2) 
is relatively small in size. The two splitters bounding the concatenation 
then serve as pivots. 

Keys and associated values are partitioned into bins defined by the 
pivots and counted. If the count shows that the kth key is in the bin 
bounded by the pivots, the algorithm completes with a selection on this 
relatively small bin. Otherwise, new pivots are chosen and the process 
iterates. 

Performance on the GPU. This algorithm makes excellent use of the 
parallelism available on the GPU. Our largest runs used 64 million 
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Fig. 2. Timings for different k/n, where 
k is the rank of the element selected 
for and n is the list length. Each line 
marked by a percentage represents 
a different value for k/n. These are 
compared to three other methods of 
GPU selection.

threads, delivering good thread-level parallelism. The algorithm is not 
particularly compute-intensive, but truly benefits from the massive 
parallelism of the GPU. The latency from the main memory to the GPU 
across the PCIe bus can be many times that of selection itself, so if the 
overall calculation is on the GPU, it is far better to efficiently select 
there as well. The limiting factor on the maximum size of the original 
list is the amount of global memory on the GPU.

We tested on the NVIDIA Quadros 5000 and 6000, and GeForce 
GTX 285 graphics cards. We show results from runs on the 6000. 
We compared randomized selection, selection-via-sort using Thrust 
radix sort [8], construction of the kth element [9], and construction 
by minimization of a convex function [10]. We experimented on lists 
of 32-bit integer keys, of length from 218 to 229. These were ordered 
randomly, randomly with high entropy, sorted and sorted backwards, 
and also included a real 32-bit 218-pixel image from radio astronomy. 
Our results show: 1) speedups for larger lists are three to six times 
faster than selections via sort and direct construction, and one to two 
times faster than selections via minimization of a convex function; and 
2) list sizes can be processed that are up to four times longer than those 
possible using sort.
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